使用LSTM深度学习模型进行温度的时间序

本文的目的是提供代码示例,并解释使用python和TensorFlow建模时间序列数据的思路。

本文展示了如何进行多步预测并在模型中使用多个特征。

本文的简单版本是,使用过去48小时的数据和对未来1小时的预测(一步),我获得了温度误差的平均绝对误差0.48(中值0.34)度。

利用过去小时的数据并提前24小时进行预测,平均绝对误差为摄氏温度1.69度(中值1.27)。

所使用的特征是过去每小时的温度数据、每日及每年的循环信号、气压及风速。

使用来自


转载请注明:http://www.aierlanlan.com/rzgz/4733.html

  • 上一篇文章:
  •   
  • 下一篇文章: