作为人工智能的一个重要领域,计算机视觉是一门可以识别并理解图像和场景的计算机及软件系统科学。该领域主要包括图像识别,目标检测,图像生成,图像超分辨率等多个方向。由于现实中存在众多的实际案例,目标检测应该是计算机视觉中最令人深刻的一个方向。在本教程中,我们将简要介绍包括当前目标检测的概念,软件开发人员所面临的挑战,相应的解决方案以及执行高性能目标检测的编码教程等内容。
目标检测是指计算机和软件系统在图像/场景中定位并识别出每个目标的能力,已广泛应用于人脸检测,车辆检测,行人计数,网络图像,安全系统和无人驾驶汽车等领域。当前有很多目标检测方法能够在实践中应用。像其他任何计算机技术一样,各种创造性和效果惊人的目标检测方法都是来自计算机程序员和软件开发人员的努力。
年之后,深度学习技术的突破性及其快速应用,带来了诸如R-CNN,Fast-RCNN,Faster-RCNN,RetinaNet等诸多高精度目标检测方法,以及以SSD和YOLO为代表的等快而准的目标检测算法。想要使用这些基于深度学习的目标检测方法,我们需要对数学知识及深度学习框架的深刻理解。数百万的专业计算机程序员和软件开发人员想要集成和创建用于目标检测的新产品。但是,理解并在实际中使用目标检测产品需要额外且复杂的方法,这种技术超出了一般程序员的能力范围。
想要使用ImageAI实现目标检测任务,你需要做的就是:
1.在计算机系统上安装Python
2.安装ImageAI及其依赖库
3.下目标象检测的模型文件
4.运行示例代码(只有10行)
现在让我们开始吧~
1)从Python