对于本科是数学与统计学相关专业的学生来说,在研究生阶段主攻AI方向是不错的选择,因为AI领域的相关研究方向通常需要具有扎实的数学基础,数学基础好更容易做出成果。但是,相对于计算机专业的学生来说,数学专业的学生在动手实践能力方面会有所欠缺,所以应该加强编程方面能力的培养。
目前AI领域的研究多集中在机器学习(含深度学习)、计算机视觉、自然语言处理和机器人学等领域,其中机器学习的热度比较高,相关的研究也比较系统,所以从机器学习入门AI是不错的选择。
对于非计算机相关专业,同时还没有进入课题组的研一学生来说,在学习机器学习的过程中,一方面要了解机器学习的概念,另一方面也要尽快锻炼自己的编程能力,为研二期间进入课题组做好准备。
目前Python语言在机器学习领域有广泛的应用,我在早期从事机器学习实现时使用的是Java语言,后来改用Python语言之后,明显感觉Python还是比较简单便捷的。另外,Python语言语法简单易学,即使没有任何编程基础也能够掌握。
在掌握Python的基础语法之后就可以开始进行一些简单的机器学习实验了,可以从一些比较常见的算法实现开始,比如knn、决策树、朴素贝叶斯等等,在实验的过程中最好结合实际的场景进行,这样会增强自己的落地实践能力,对于非计算机专业的学生来说,这个环节还是比较重要的。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以