十行代码搞定目标检测

大数据文摘出品

编译:邢畅、宁静

计算机视觉是人工智能的一个重要领域,是关于计算机和软件系统的科学,可以对图像和场景进行识别、理解。计算机视觉还包括图像识别、目标检测、图像生成、图像超分辨率重建等多个领域。由于存在大量的实际需求,目标检测可能是计算机视觉中最有意义的领域。

目标检测是指计算机和软件系统对图像或场景中的目标进行定位和识别的任务。目标检测已广泛应用于人脸检测、车辆检测、人流量统计、网络图像、安防系统和无人驾驶等多个领域。

在应用或系统中使用目标检测方法,以及基于这些方法构建新的应用都不是简单的任务。早期目标检测的实现基于经典算法,比如流行的计算机视觉库OpenCV中支持的算法。然而,这些经典算法在不同的条件下无法获得稳定的性能。

年深度学习的突破性进展和迅速普及,使得R-CNN、Fast-RCNN、Faster-RCNN、RetinaNet以及快速、高度准确的SSD、YOLO等目标检测算法应运而生。这些基于深度学习、机器学习的算法,需要一定的数学以及深度学习框架基础。有数百万的专业计算机程序员和软件开发人员想要集成和创建基于目标检测算法的新产品。同时由于理解和实际使用较为复杂,一直无法实现。如何开发出高效的目标检测代码呢?ImageAI就应运而生了。

ImageAI让代码变得简洁

ImageAI是一个python库,只需要几行代码,就可以让程序员和软件开发人员轻松地将最先进的计算机视觉技术集成到他们现有的或新的应用中,ImageAI已经在Github上开源。

Github


转载请注明:http://www.aierlanlan.com/cyrz/5018.html